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A B S T R A C T

Outcome-adaptive randomization is one of the possible elements of an adaptive trial design in which
the ratio of patients randomly assigned to the experimental treatment arm versus the control
treatment arm changes from 1:1 over time to randomly assigning a higher proportion of patients to the
arm that is doing better. Outcome-adaptive randomization has intuitive appeal in that, on average, a
higher proportion of patients will be treated on the better treatment arm (if there is one). In both the
randomized phase Il and phase Il settings with a short-term binary outcome, we compare outcome-
adaptive randomization with designs that use 1:1 and 2:1 fixed-ratio randomizations (in the latter, twice
as many patients are randomly assigned to the experimental treatment arm). The comparisons are
done in terms of required sample sizes, the numbers and proportions of patients having an inferior
outcome, and we restrict attention to the situation in which one treatment arm is a control treatment
(rather than the less common situation of two experimental treatments without a control treatment).
With no differential patient accrual rates because of the trial design, we find no benefits to
outcome-adaptive randomization over 1:1 randomization, and we recommend the latter. If it is thought
that the patient accrual rates will be substantially higher because of the possibility of a higher proportion
of patients being randomly assigned to the experimental treatment (because the trial will be more
attractive to patients and clinicians), we recommend using a fixed 2:1 randomization instead of an
outcome-adaptive randomization.

J Clin Oncol 29:771-776. Published by the American Society of Clinical Oncology

Outcome-adaptive randomization is some-
times included under the umbrella of “Bayesian
clinical trials,” but there is nothing inherently Bayes-
ian about it. As noted by Berry,* regardless of the
rationale used to design a trial, trial designs can be
modified to ensure they have the usual (“frequen-
tist”) operating characteristics (type 1 error, power).
Berry further notes on page 34 “the Bayesian ap-
proach served as a tool to build a frequentist design
having good properties, such as small average sam-
ple size, fewer participants in the trial assigned to
ineffective therapy and so on, with a consequent
benefit for medical research.” Biswas et al’ report
that 20 trials conducted at the M. D. Anderson
Cancer Center in 2000 to 2005 used outcome-
adaptive randomization.

In this article, we focus on comparing a stan-

Randomized clinical trials have long been recog-
nized as akey tool for advancing medical knowledge.
Random treatment assignments help to remove any
bias due to systematic pretreatment differences in
patient populations and allow an inference concern-
ing the causal relationship between the treatment
and the outcome. In a typical randomized clinical
trial comparing an experimental treatment to a con-
trol treatment, each patient has an equal chance of
being assigned to either treatment arm. Sometimes,
to make the trial more attractive to patients, 2:1
randomization is used, in which the probability that
apatientis assigned to the experimental treatment
arm is 2/3. In outcome-adaptive randomization,
the probability that the next patient receives the
experimental treatment is not fixed throughout
the trial but changes on the basis of the accruing
outcome data. In particular, the probability of

dard treatment with an experimental treatment,
with the archetype being treatment A versus treat-

being assigned to the experimental treatment arm
increases when the accruing outcome data suggest
that the experimental treatment is better than the
control treatment. The appeal of this approach is
that it appears that fewer patients would get the
inferior treatment.'”

mentA + B. One-sided questions like this are typical
of phase III trials and also of randomized phase II
screening trials.® For trials of this nature, if one is
interested in getting trial results as quickly as possi-
ble, then a standard 1:1 randomization is generally
the best” (assuming the accrual rate is independent
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of the trial design). A 1:1 randomization approximately provides the
most information about the between-arm treatment effect for a given
total sample size. This is intuitively apparent and can also be shown
formally by using decision analysis.® This leaves open the important
question of what trial design is best for the patients enrolled on the
trial. In this article, we will compare some outcome-adaptive random-
ization trial designs with standard randomized trial designs. To focus
on the type of randomization, we will insist that all the trial designs
have the same operating characteristics and the same interim moni-
toring rules.

Outcome-adaptive randomization should not be confused with
randomization that adapts to help achieve covariate balance between
the treatment arms.” This latter type of commonly used randomiza-
tion uses accruing covariate information (but not outcome informa-
tion) to modify the randomization. For simplicity, we will use the term
“adaptive randomization” in this article to refer only to outcome-
adaptive randomization.

We will first compare trial designs with fixed unbalanced ran-
domization. Although this type of randomization is not adaptive, it
demonstrates some of the important issues that arise because of un-
balanced randomization that are also present in adaptive randomiza-
tion. Phase II adaptive-randomization trial designs and phase III
adaptive-randomization trial designs are then considered. For the
adaptive-randomization phase III trial designs, we will insist on using
a randomization and analysis strategy that controls for possible
time trends that could influence outcomes, such as changes in the
prognostic mix of the patient population or in ancillary care or
salvage treatment over time. We end with a discussion of some
remaining issues.

In this section, we consider the situation in which more patients are
randomly assigned to the experimental arm than to the control arm,
but the probability (> 1/2) that a patient is randomly assigned to the
experimental arm is fixed throughout the trial. A trial with an unbal-
anced randomization will generally require a larger sample size than
one with a 1:1 randomization. For example, Table 1 considers the
situation for a randomized phase II screening trial designed to detect
an improvement in response rate from 20% for the control treatment
to 40% for the experimental treatment. The operating characteristics
of the trial designs (using a normal approximation to the difference in

proportions) are set at typical phase II levels: the type I error (proba-
bility of declaring the experimental treatment better than the control
when it is not) has been set at 10%, and the power (probability of
declaring the experimental treatment better than the control when it
has a 40% response rate and the control has a 20% response rate) has
been set at 90%. The trial with a balanced (1:1) randomization re-
quires a total of 132 patients, and the trial with a 2:1 randomization
ratio requires a total of 153 patients (Table 1). Another way to say this
is that the information about the treatment effect obtained from 66
patients in each treatment arm is the same as obtained with 102
patients in the experimental arm and 51 in the control arm. Although
higher randomization ratios are uncommon in fixed randomiza-
tion designs, they are used in adaptive-randomization designs.
Therefore, it is worth noting that with ratios of 4:1 and 9:1, the
required sample sizes get much larger, for example, 380 patients for
9:1 randomization (Table 1).

When thinking about adaptive randomization, the sample
size of the trial is not the only consideration. The two parameters
that are often used to evaluate relative merits of such designs are the
expected number of nonresponders and the probability a patient
will be a responder.®'® Because these parameters depend on the
true response rates in the treatment arms, they are shown for
several alternatives in Table 1. Consider the trial design alternative
effect (40% v 20% response rate), which is bolded in Table 1. The
1:1 randomization trial has, on average, 92.4 nonresponders and a
30.0% chance of response for participants. The 2:1 randomization
has 102.0 nonresponders and a 33.3% response probability, the 4:1
randomization has 134.4 nonresponders and a 36.0% response
probability, and the 9:1 randomization has 235.6 nonresponders
and a 38.0% response probability.

In theory, given the true response rates, it is possible to deter-
mine the randomization ratio that minimizes the expected num-
ber of nonresponders.'® For 40% versus 20%, this ratio is
VE:I (1.41:1). Note that even with this randomization ratio that is
optimal in terms of the number of nonresponders, the actual
reduction in the number of nonresponders as compared with 1:1
randomization is small: 92.2 versus 92.4 (Table 1). Some'>'! have
suggested adaptive randomization to target this optimal random-
ization ratio. However, since optimal ratio is so close to 1:1 and the
gains are so small even when the ratio is known, we will not
consider this type of adaptive randomization. Instead, we consider

Table 1. Average Proportion of Responders and No. of Nonresponders for Various Randomized Phase Il Trial Designs Using Fixed Unbalanced Randomization

K:1 Randomization Ratio (total sample size of the trial)

Response Rates by 11 \E:I 2:1 4:1 91
Treatment Arm (n=132) (n = 135) (n = 153) (n =210 (n = 380)

Control Experimental P (responders) No. of P (responders) No. of P (responders) No. of P (responders) No. of P (responders) No. of
Arm Arm % Nonresponders % Nonresponders % Nonresponders % Nonresponders % Nonresponders
0.2 0.2 20.0 105.6 20.0 108.0 20.0 122.4 20.0 168.0 20.0 304.0
0.2 0.3 25.0 99.0 25.8 100.1 26.6 112.2 28.0 151.2 29.0 269.8
0.2 0.4 30.0 92.4 31.7 92.2 333 102.0 36.0 134.4 38.0 235.6
0.2 0.5 35.0 85.8 37.6 84.3 40.0 91.8 44.0 117.6 47.0 201.4

NOTE. One-sided type 1 error = 10%, power = 90% at 20% v 40% response rates; results based on 500,000 simulations. Characteristics of trial designs
corresponding to the trial alternative hypothesis are in bold type. P (responders) % is the average proportions of responders given as a percentage.
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Table 2. Average Proportion of Responders, No. of Nonresponders, and Overall Proportion Treated on the Experimental Arm for Various Randomized
Phase Il Trial Designs, Some of Which Use Adaptive Randomization

Adaptive Randomization
(N = 140)

Fixed Sample Size

Capped at 80% Assignment Probability

Capped at 90% Assignment Probability

Response Rates 11 2:1 Overall % Overall %
by Arm (n=132) (n = 153) Treated on Treated on
Control Experimental P (responders) No. of P (responders) No. of P (responders) No. of Experimental P (responders) No. of Experimental

Arm Arm % Nonresponders % Nonresponders % Nonresponders Arm % Nonresponders Arm
0.2 0.2 20.0 105.6 20.0 122.4 20.0 112.0 50.0 20.0 112.0 50.0
0.2 0.3 25.0 99.0 26.6 112.2 26.0 103.6 59.7 26.0 103.6 60.3
0.2 0.4 30.0 92.4 B3 102.0 33.2 935 66.2 33.7 92.9 68.2
0.2 0.5 35.0 85.8 40.0 91.8 41.0 82.6 69.9 421 81.1 73.6

% is the average proportions of responders given as a percentage.

NOTE. Adaptive randomization uses the method of Thall and Wathen'? but with no early stopping. One-sided type 1 error = 10%, power = 90% at 20% v 40%
response rates; results based on 500,000 simulations. Characteristics of trial designs corresponding to the trial alternative hypothesis are in bold type. P (responders)

adaptive randomization methods that have the potential for
achieving much higher randomization ratios.

Adaptive randomization increases the probability of assigning pa-
tients to the treatment arm that appears to be doing better. There
are many ways to do this. We consider the method of Thall
and Wathen'*:

Assignment probability to experimental treatment arm

_ [P(E > Q)]
T[PEE > OF+[1—PE > O (1)

where a = 1/2 and P(E > C) is the posterior probability that the
experimental treatment is better than the control treatment estimated
from the data seen so far (using uniform prior distributions'?). For
example, if P(E > C) equaled 0.05, 0.10, 0.3, 0.5, 0.7, 0.9, or 0.95, then
patients would be assigned to the experimental treatment with prob-
ability 0.19, 0.25, 0.4, 0.5, 0.6, 0.75, or 0.81, respectively.

The estimator (1) of the assignment probability can be unstable
at the beginning of the trial because there is little data at that point to
estimate P(E > C). One possibility is to have a run-in period with the
randomization probability being 1/2 before starting to use (1); this
approach will be used when discussing phase III trials. The approach
we will use here for phase II trials is the one given by Thall and
Wathen'%: Use formula (1) but with a = n/(2N), where n is the current
sample size of the trial and N is the maximum sample size of the trial.
This approach yields assignment probabilities closer to 1/2 earlier in
the trial. For example, if the current estimate of P(E > C) is 0.9, the
probability of assignment to the experimental treatment arm would be
0.57,0.63, or 0.70 if the trial was one quarter, one half, or three quarters
completed, respectively. From a practical perspective, one would in
addition want to prevent the assignment probability from becoming
too unbalanced, that is, being greater than 0.8 or 0.9 (extreme imbal-
ances can create problems with the study interpretation if there are
time trends; see Adaptive Randomization of Phase III Trials). We

WwWw.jco.org

considered two versions of the adaptive design with the probability of
arm assignment capped at 0.8 and 0.9.

Table 2 displays the results for the adaptive randomization and
1:1 and 2:1 fixed randomization using the same phase II operating
characteristics as described in the Fixed Unbalanced Randomization
section. (No early stopping is allowed in this set of simulations to
simplify the comparison of the designs.) The adaptive approach re-
quires a total of 140 patients compared with 132 patients required for
a fixed 1:1 randomization. Under the null hypothesis (response rates
are 20% in both arms), the probability of response for a study partic-
ipant is the same for all designs (20%). However the adaptive random-
ization designs have higher numbers of nonresponders compared
with the 1:1 randomization (112.0 v 105.6; first row of data in Table 2).
When the new treatment is beneficial, the adaptive randomization
provides a slightly higher probability response: 33.2% or 33.7% versus
30% under the design alternative (third row of data in Table 2). At the
same time, the adaptive design continues to result in a higher number
of nonresponders than 1:1 randomization except when the treatment
effect exceeds the design alternative. With respect to limiting the
probability of arm assignment in adaptive randomization results, Ta-
ble 2 suggests that there is no meaningful difference between capping
the probability at 0.8 versus at 0.9. Therefore, we will cap the assign-
ment probability at 0.8 in the following discussion.

Trials with adaptive randomization frequently have interim
monitoring based on the assignment probability. For example, Faderl
et al” suggest stopping their trial and declaring the experimental treat-
ment better than the control treatment if P(E > C) > py,,, where
Pstop = 0.95; Giles et al'* use Pstop = 0.85 in a similar manner. These
investigators also suggest stopping the trial if P(E > C) < py,,, and
declaring the control treatment better. However, this type of symmet-
ric inefficacy/futility monitoring is inappropriate for the type of one-
sided question we are considering here.'® Instead, for simplicity, we
will not consider inefficacy/futility monitoring in the simulations. If
the trial reaches a maximum sample size without stopping, we declare
that the experimental treatment does not warrant further study.

Table 3 displays the results of the simulations that use early
stopping for the adaptive randomization and 1:1 fixed randomization.
The maximum sample sizes (190 and 208 for fixed randomization and
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Table 3. Average Sample Size, Proportion of Responders, and No. of Nonresponders for Fixed 1:1 and Adaptive Randomized Phase Il Trial Design

Response Rates by
Treatment Arm

Fixed 1:1 (maximum sample size = 190)

Adaptive Randomization Capped at 80% Assignment
Probability (maximum sample size = 208)

Control Experimental Average No. of Average No. of
Arm Arm sample size P (responders) % Nonresponders sample size P (responders) % Nonresponders
0.2 0.2 177.9 20.3 142.3 194.3 20.2 1555
0.2 0.3 135.2 25.9 101.4 147.6 26.3 109.7
0.2 0.4 78.4 314 54.8 83.7 321 57.3
0.2 0.5 43.3 36.6 28.2 45.3 37.1 28.8

NOTE. Adaptive randomization uses the method of Thall and Wathen'2. Trials are stopped early for superiority of the experimental treatment if PA(E > C) > 0.984.
One-sided type 1 error = 10%; power = 90% at 20% v 40% response rates; results based on 500,000 simulations. Characteristics of trial designs corresponding
to the trial alternative hypothesis are in bold type. P (responders) % is the average proportions of responders given as a percentage.

the adaptive design, respectively) and value of py,, (0.984) were cho-
sen so that the trial designs had type I error of 10% and power of 90%
for the alternative of 20% versus 40% response rates. In terms of
probability of response for a participant, the two designs perform
similarly: the differences are < 1% across the range of simulated
scenarios. When compared by the number of nonresponders, the
adaptive design does nontrivially worse (eg, on average 13 more non-
responders in adaptive design under the null hypothesis) except when
the treatment effect exceeds the design target alternative.

As an example based on a real trial, consider the adaptive ran-
domized trial of clofarabine plus low-dose cytarabine versus clofara-
bine (control arm) for acute myeloid leukemia.> With the early
stopping rules used, 63% of 54 patients in the experimental arm and
31% of 16 patients in the control arm had responses, yielding 31
nonresponders in total (56% response rate; 70 patients). This is a
favorable situation for an adaptive randomization design because the
response rates are so different between the arms. But even here, a fixed
2:1 randomization would have arguably been a better option: 38 and
19 patients in each arm would have yielded the same precision for
estimating the treatment difference if one saw the same response rate
difference between the two arms, yielding 27 nonresponders (53%
response rate; 57 patients).

In the phase III setting, the use of adaptive randomization introduces
several additional issues. Logistically, phase III studies typically use
long-term outcomes like overall survival or progression-free survival;
that makes adaptive randomization, which requires sufficient accru-

ing outcome information to adapt, difficult to implement. It is
possible to use whatever survival information is available to esti-
mate P(E > C) and adapt the randomization imbalance,'® but this
randomization will not adapt as quickly as when the outcome is an
(almost) immediately available binary outcome. However, to keep the
exposition simple and give adaptive randomization the best chances to
work well, we will continue to assume an immediate binary outcome.
A more fundamental concern with adaptive randomization, which
was noted when it was first proposed,'”?° is the potential for bias if
there are any time trends in the prognostic mix of the patients accruing
to the trial. In fact, time trends associated with the outcome due to any
cause can lead to problems with straightforward implementations of
adaptive randomization. For example, consider a phase I1I trial testing
whether a new therapy results in a 10% absolute increase in 1-year
survival (from 80% to 90%) with 90% power and a one-sided 2.5%
type I error. Suppose the experimental therapy provides no benefit
over the control treatment but the prognostic mix of the patients
entering the trial improves over time with a linearly increasing 1-year
survival from 80% to 90% for both treatment arms. Then, the adaptive
design described in Table 2 will have type I error inflated to 6.7%
(from 2.5%).

One approach to the time-trend problem is to perform block
randomization with a block-stratified analysis, as described on pp
331-333 of Jennison and Turnbull*!: The first B patients on the trial
are randomly assigned 1:1 between the treatment arms. At that point,
P(E > C) is estimated by using (1) with a = 1/2, and the calculated
assignment probability is used to randomly assign the next B patients.
After the outcomes of these patients have been evaluated, P(E > C) is
again estimated by using (1) with a = 1/2 to randomly assign the next

Table 4. Average Proportion of Responders and No. of Nonresponders for Various Randomized Phase Il Trial Designs

Fixed Sample Size (1:1)

1-Year Survival Rates (n = 522; 261:261)

Fixed Sample Size (2:1)
(n = 573; 382:191)

Adaptive Randomization: Block-Stratified Analysis and
Randomization Capped at 80% Assignment Probability
(n = 748; block size = 50)

Control  Experimental No. of No. of No. of Overall % Treated on
Arm Arm P (responders) % Nonresponders P (responders) % Nonresponders P (responders) % Nonresponders Experimental Arm
0.8 0.8 80.0 104.4 80.0 114.6 80.0 149.6 50.0
0.8 0.85 82.5 91.4 83.3 95.5 83.3 124.6 66.9
0.8 0.9 85.0 78.3 86.7 76.4 87.5 93.4 75.1

NOTE. Adaptive randomization uses the method of Thall and Wathen'? but with no early stopping. One-sided type 1 error = 2.5%, power = 90% at 80% v 90%
1-year survival rates; results based on 500,000 simulations. Characteristics of trial designs corresponding to the trial alternative hypothesis are in bold type. P
(responders) % is the average proportions of responders given as a percentage.
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B patients, and so on, until the trial ends. The block-stratified analysis
of this trial estimates the treatment effect in each block of patients and
then averages these effects over the blocks by using the Mantel-
Haenszel statistic.”* This block randomization method and block-
stratified analysis eliminate the possibility of time trends confounding
the results. However, as will be shown next, they reduce the efficiency
of the adaptive randomization.

Table 4 compares phase I1I designs that use the blocked-adaptive
randomization with a blocked-stratified analysis (block size 50) with
1:1 and 2:1 fixed randomization (all without interim monitoring). All
designs have a one-sided type I error of 2.5% and 90% power for
detecting 80% versus 90% 1-year survival rates (1-year survival for
each patient assumed to be known immediately). The blocked-
adaptive randomization that uses the block-stratified analysis requires
748 patients. This can be contrasted with 522 patients required in the
1:1 sample-size design. (A large part of the sample size increase is due
to the necessity of using a stratified analysis: if an unstratified analysis
was used for the adaptive design, then 606 patients would be required.)
The adaptive randomization design results in a considerable increase
in the number of nonresponders relative to the 1:1 randomization (eg,
149.6 v 104.4 under the null hypothesis) while providing a marginal
improvement in probability of response (87.5% v 86.7% under the
design alternative hypothesis). Moreover, use of the adaptive design
requires a 43% increase in overall sample size. Table 4 shows thata 2:1
fixed randomization provides improvement in probability of re-
sponse similar to that of the adaptive randomization design without
the substantial increases in the number of nonresponders or much
larger sample size.

Because of the possibility of time trends, we believe that any phase III
trial with adaptive randomization should use block randomization
and a block-stratified analysis. Short-term, placebo-controlled,
randomized phase II trials that use adaptive randomization would
not require stratification. However, for a randomized phase II trial
that is not blinded, there is the possibility that the recruitment

patterns of the trial could change substantially over the course of
the trial because of the knowledge that the randomization is favor-
ing the experimental treatment arm. Therefore, we believe the
block-stratified approach is necessary for randomized phase II
trials that are not placebo controlled. For both phase IT and phase
III trials, there is the possibility that knowledge that the random-
ization ratio is favoring the control treatment arm will drastically
diminish accrual, suggesting the advisability of placebo-controlled
designs when possible.

Adaptive randomization is inferior to 1:1 randomization in
terms of acquiring information for the general clinical community
and offers modest-to-no benefits to the patients on the trial, even
assuming the best-case scenario of an immediate binary outcome. Our
negative conclusions concerning the utility of adaptive randomization
should not be applied to adaptive trial design modifications in general.
In particular, formal interim monitoring that allows for early stopping
for striking superiority or futility/inefficacy has long been an adaptive
part of cancer trial designs. Multiarm trials with more than one
experimental treatment arm, with interim monitoring applied to
the distinct experimental arm-control arm comparisons, are an
efficient adaptive way to compare multiple treatments to a control
treatment.?® Finally, the use of biomarker-defined subsets in ran-
domized trials, with interim monitoring applied separately to these
subsets, will become more important as cancer treatments become
more individualized.**
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